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ABSTRACT

We provide a systematic study of the problem of finding the
source of a computer virus in a network. We model virus
spreading in a network with a variant of the popular SIR
model and then construct an estimator for the virus source.
This estimator is based upon a novel combinatorial quan-
tity which we term rumor centrality. We establish that
this is an ML estimator for a class of graphs. We find the
following surprising threshold phenomenon: on trees which
grow faster than a line, the estimator always has non-trivial
detection probability, whereas on trees that grow like a line,
the detection probability will go to 0 as the network grows.
Simulations performed on synthetic networks such as the
popular small-world and scale-free networks, and on real
networks such as an internet AS network and the U.S. elec-
tric power grid network, show that the estimator either finds
the source exactly or within a few hops in different network
topologies. We compare rumor centrality to another com-
mon network centrality notion known as distance centrality.
We prove that on trees, the rumor center and distance cen-
ter are equivalent, but on general networks, they may differ.
Indeed, simulations show that rumor centrality outperforms
distance centrality in finding virus sources in networks which
are not tree-like.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Network problems, Graph algo-
rithms; G.2.1 [Combinatorics]: Combinatorial algorithms,
Counting problems, Permutations and combinations

General Terms

Theory, Performance, Security, Algorithms
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1. INTRODUCTION

Imagine a computer virus has spread through a large net-
work, and all that is known about the outbreak is which
computers are infected and which computers have been com-
municating with each other. In this case, is it possible to re-
liably find the source of the computer virus? At first glance,
this problem seems extremely challenging and even impossi-
ble. In a large and complex network, how can one find this
elusive virus source? However, in this work, we will present
a simple algorithm for reliably detecting this source, prove
that it works well, and demonstrate its performance with
simulations on synthetic and real network topologies.

1.1 Related Work

Prior work on computer virus spreading has utilized mod-
els for viral epidemics in populations. The natural (and
somewhat standard) model for viral epidemics is known as
the susceptible-infected-recovered or SIR model [2]. This
model, while initially developed for human viruses, is also
commonly used to model the spread of computer viruses [6],
[8]. In this model, there are three types of nodes: (i) sus-
ceptible nodes, capable of being infected, (ii) infected nodes
that can spread the virus further, and (iii) recovered nodes
that are cured and can no longer become infected. Research
in the SIR model has focused on understanding how the
structure of the network and rates of infection/cure lead to
large epidemics [8], [6], [7], [10]. This motivated various re-
searchers to propose network inference techniques to learn
the relevant network parameters [12], [9]. However, there
has been little (or no) rigorous work done on inferring the
source of a viral epidemic.

The primary reason for the lack of such work in finding
epidemic sources is that the problem is quite challenging.
It is not clear how to construct the proper estimator given
the complexity of the network and knowledge only of which
nodes are infected, but not when they were infected. Despite
the complexity of inferring the virus source in a network, a
simple heuristic is to say that the source is the center of
the network. There are many notions of network centrality
[5],[4],[11] but a very common one is known as distance cen-
trality. The graph theoretic properties of distance centrality
have been extensively studied [11]. However, there has been
no rigorous work done to justify distance centrality or any
other network centrality as the proper estimator for a virus
source in a network.

1.2 Our Contributions
In this paper, we provide a systematic study of the prob-



lem of finding the virus source in a network. We construct
the virus source estimator in Section 2. We use a sim-
ple virus spreading model based upon the SIR model (c.f.
Ganesh, et. al., [6]) and then cast finding the virus source as
a maximum likelihood (ML) estimation problem. For a gen-
eral network this seems to be a daunting task, so we begin
by addressing the virus source estimation problem for trees.
For regular trees, we are able to reduce the ML estimator
to a novel combinatorial quantity we call rumor central-
ity. In principle, rumor centrality involves the sum of an
exponential number of terms. However, for trees we find a
structural property that allows for a linear time message-
passing algorithm for evaluating rumor centrality'. We ex-
tend this notion of rumor centrality to construct estimators
for general trees. For a general graph, we note that there is
an underlying tree which corresponds to the first time each
node becomes infected. Using this intuition, we develop es-
timators for general graphs which utilize rumor centrality
and breadth first search (BFS) trees (the idea being that
the virus would spread fastest along a tree that is close to
the BFS tree).

To understand the estimator performance in terms of it
being able to correctly find the virus source, we study its
performance on general trees in Section 3. Somewhat sur-
prisingly, we find the following threshold phenomenon about
the estimator’s effectiveness. If a tree grows like a line, then
the detection probability of the ML virus source estimator
will go to 0 as the network grows in size; but for trees growing
faster than a line, the detection probability of our estimator
will always be strictly greater than 0 (uniformly bounded
away from 0) irrespective of the network size. In the latter
case, we find that when the estimator makes an error, the
wrong prediction is within a few hops of the actual source.
Thus, our estimator is essentially the optimal for any tree
network. The proofs of these results (found in Section 5) are
non-trivial and require novel analytic techniques which may
be of general interest in the context of graphical inference
and percolation.

We study the performance of the general graph virus source
estimator through extensive simulations in Section 4. As
representative results, we test the estimator’s performance
on the popular small-world and scale-free networks, and also
on a real internet autonomous system (AS) network and the
U.S. electrical power grid network. Virus spreading on the
AS network corresponds to the spread of a computer virus,
while virus spreading on the power grid network could in-
stead represent a cascading failure or a blackout. We find
that the estimator performs well on all of these different
networks.

We compare the new notion of rumor centrality with the
more common distance centrality. We show that on trees,
the rumor center is equivalent to the distance center. This
indicates that distance centrality is the correct estimator for
trees and tree-like networks. However, on general networks
the rumor center and the distance center can be different.
This is because distance centrality only considers the short-
est paths in the network, whereas rumor centrality utilizes
a richer structure. Through simulations, we find that rumor
centrality is a better estimator for the virus source than dis-

"We note that this message-passing algorithm has no rela-
tion to standard Belief Propagation or its variants, other
than that it is an iterative algorithm.

tance centrality on networks which are not tree-like, such as
the small-world and power grid networks.

2. VIRUS SOURCE ESTIMATOR
2.1 Virus Spreading Model

We consider a network of nodes to be modeled by an undi-
rected graph G(V, E), where V is a countably infinite set of
nodes and F is the set of edges of the form (,j) for some &
and j in V. We assume the set of nodes is countably infinite
in order to avoid boundary effects. We consider the case
where initially only one node v* is the rumor source.

We use a variant of the commonly used SIR model for
the virus spreading known as the susceptible-infected or SI
model which does not allow for any nodes to recover, i.e.
once a node has the virus, it keeps it forever. Once a node
¢ has the virus, it is able to spread it to another node j if
and only if there is an edge between them, ie. if (i,5) €
E. The time for a node i to spread the virus to node j is
modeled by an exponential random variable 7;; with rate A.
We assume without loss of generality that A = 1. All 74;’s
are independent and identically distributed.

2.2 Virus Source Maximum Likelihood Esti-
mator

We now assume that the virus has spread in G(V, E) ac-
cording to our model and that N nodes have the virus.
These nodes are represented by a virus graph Gn(V, E)
which is a subgraph of G(V, E). We will refer to this virus
graph as Gy from here on. The actual virus source is de-
noted as v* and our estimator will be ¥. We assume that
each node is equally likely to be the source a priori, so the
best estimator will be the ML estimator. The only data we
have available is the final virus graph G, so the estimator
becomes

v = arg max P(Gn[v* =) (1)
veG N
In general, P(Gy|v* = v) will be difficult to evaluate. How-
ever, we will show that in regular tree graphs, ML estimation
is equivalent to a combinatorial problem.

2.3 Virus Source Estimator for Regular Trees

To simplify our virus source estimator, we consider the
case where the underlying graph is a regular tree where every
node has the same degree. In this case, P(Gn|v" = v) can
be exactly evaluated when we observe Gy at the instant
when the N** node is infected.

Consider for example that all nodes in the network in Fig-
ure 1 are infected. If node 1 was the source, then {1,2,4}
is a permitted infection sequence or permutation, whereas
{1,4,2} is not because node 2 must have the virus before
node 4. In general, to obtain the virus graph Gy, we sim-
ply need to construct a permutation of the N nodes subject
to the ordering constraints set by the structure of the virus
graph. We will refer to these permutations as permitted per-
mutations. The likelihood of the virus graph given a source
can then be calculated by adding up the probabilities of all
permitted permutations which begin with the source.

In general, these permutations have different probabilities.
However, we find that on a regular tree, they are all equally
likely. This is because of the memoryless property of the
virus spreading time between nodes and the constant degree



Figure 1: Illustration of variables 7 and T%.

of all nodes. To see this, imagine every node in a regular
tree has degree k£ and we wish to find the probability of a
permitted permutation o conditioned on v* = v. A new
node can connect to any node with a free edge with equal
probability. When it joins, it contributes k — 2 new free
edges. Therefore, the probability of any N node permitted
permutation o for any node v in Gy is

1 1 1
kk+(k—2)"k+(N-2)(k-2)

P(ojv" =v) =

The probability of obtaining G given that v* = v is ob-
tained by summing the probability of all permitted permu-
tations which result in Gn. All of the permutations are
equally likely, so P(Gn|v* = v) will be proportional to the
number of permitted permutations which start with v and
result in Gn. Thus, we need to count the number of these
permutations, which we now define:

DEFINITION 1. R(v,T) is the number of permitted permu-
tations of nodes that result in a tree T and begin with node
vel.

With this definition, the likelihood is proportional to R(v, Gn),

so we can then rewrite our estimator as

U= argvnelgii P(Gnv" =v) = argvrggi R(v,Gn) (2)

R(v,Gn) counts the number of ways a virus, or more gen-
erally a rumor or any information, can spread. Therefore,
we call R(v, Gn) the rumor centrality of the node v, and
refer to the node which maximizes it as the rumor center
of the graph.

2.4 Evaluating Rumor Centrality

We now show how to evaluate rumor centrality. To begin,
we first define a term which will be of use in our calculations.

DEFINITION 2. T is the number of nodes in the subtree
rooted at node v;, with node v as the source.

To illustrate this definition, a simple example is shown in
Figure 1. In this graph, T3 = 3 because there are 3 nodes in
the subtree with node 2 as the root and node 1 as the source.
Similarly, T# = 1 because there is only 1 node in the subtree
with node 7 as the root and node 1 as the source. We now
can count the permutations of G with v as the source. In
the following analysis, we will abuse notation and use 7, to
refer to the subtrees and the number of nodes in the subtrees.
To begin, we assume v has k neighbors, v1,v2, ..., vx. Each
of these nodes is the root of a subtree with 17, T;’Q, e T
nodes, respectively. Each node in the subtrees can receive
the virus after its respective root has the virus. We will
have N slots in a given permitted permutation, the first of
which must be the source node v. Then, from the remaining
N — 1 nodes, we must choose T, slots for the nodes in

the subtree rooted at vi1. These nodes can be ordered in
R(v1,Ty,) different ways. With the remaining N — 1 — T,
nodes, we must choose T, nodes for the tree rooted at node
vz, and these can be ordered R(v2,Ty,) ways. We continue
this way recursively to obtain

N-1 N-—-1-T;
o= () (7).
v1 v2

(N—l—zk 1TU>HRUZ )

Now, to complete the recursion, we expand each of the
R(v;,Ty,) in terms of the subtrees rooted at the nearest
neighbor children of these nodes. To simplify notion, we
label the nearest neighbor children of node v; with a second
subscript, i.e. v;;. We continue this recursion until we reach
the leaves of the tree. The leaf subtrees have 1 node and 1
permitted permutation. Therefore, the number of permitted
permutations for a given tree Gy rooted at v is

U'L’ U
N —1) IH Ty
R(viJ7T$)”)

(T2 —1)!
H T’L}}, | H Tv |

R(v,GnN)

i=1 vij ET:)’, Vi *
_ B 1 | H H Uz]: v”)
Ul Vij ET” 'u”
vl & o

ueGN

In the last line, we have used the fact that T, = N. We
thus end up with a simple expression for rumor centrality in
terms of the size of the subtrees of all nodes in Gy .

2.5 Calculating Rumor Centrality: A Message-
Passing Algorithm

In order to find the rumor center of an N node tree Gy,
we need to first find the rumor centrality of every node in
GnNn. To do this we need the size of the subtrees T, for
all v and w in Gy. There are N2 of these subtrees, but
we can utilize a local condition of the rumor centrality in
order to calculate all the rumor centralities with only O(N)
computation. Consider two neighboring nodes u and v in
Gn. All of their subtrees will be the same size except for
those rooted at w and v. In fact, there is a special relation
between these two subtrees.

T) =N - T} (4)

For example, in Figure 1, for node 1, T3 has 3 nodes, while
for node 2, T? has N — T4 or 4 nodes. Because of this
relation, we can relate the rumor centralities of any two
neighboring nodes.

TU

R(u,Gn) = N_T¢ (5)

R(v,GN) "=

This result is the key to our algorithm for calculating the ru-
mor centrality for all nodes in Gn. We first select any node v



as the source node and calculate the size of all of its subtrees
T and its rumor centrality R(v, Gn). This can be done by
having each node u pass two messages up to its parent. The
first message is the number of nodes in u’s subtree, which

we call t” ., The second message is the cumulative
product of the size of the subtrees of all nodes in u’s subtree,

P . The parent node then adds the

U
u—parent(u)

uparent(u) TESSages together to obtain the size of its own
P

subtree, and multiplies the pzﬁpamnt(u) messages together
to obtain its cumulative subtree product. These messages
are then passed upward until the source node receives the
messages. By multiplying the cumulative subtree products
of its children, the source node will obtain its rumor central-
ity, R(v,Gn).

With the rumor centrality of node v, we then evaluate
the rumor centrality for the children of v using equation (5).
Each node passes its rumor centrality to its children in a
message we define as 79°%" d(u)- Bach node u can calculate
its rumor centrality using its parent’s rumor centrality and
its own subtree size T,,. We recall that the rumor centrality
of a node is the number of permitted permutations that re-
sult in Gn. Thus, this message-passing algorithm is able to
count the (exponential) number of permitted permutations
for every node in G using only O(N) computations. The
pseudocode for this message-passing algorithm is included
for completeness.

which we call p
up

Algorithm 1 Rumor Centrality Message-Passing Algo-
rithm

1: Choose a root node v € Gn

2: for v in Gn do

3:  if uis a leaf then

. up —
4: I:L;pa'rent(u) =1
5: puaparent(u) =1
6: else
7 if u is source v then
]: rdoun;bl‘ld( y = N!

N JI .
j€Echildren(v)

9: else

. up _ up
10 B0 arentu) = >tk +1

j€Echildren(u)

. up _ qup up

L1 puﬂparent(u) - tuﬂpa'rent(u) H Pi—u
jEchildren(u)
up
12: riﬁ”c’}tild(u) = T;Z:J;Lt(u)ﬂu N:Lt:garﬁﬂt(u)
u—parent(u)

13: end if
14:  end if
15: end for

2.6 Virus Source Estimator for General Trees

Rumor centrality is an exact ML virus source estimator for
regular trees. In general trees where node degrees may not
all be the same, this is no longer the case, as all permitted
permutations may not be equally likely. This considerably
complicates the construction of the ML estimator. To avoid
this complication, we define the following randomized esti-
mator for general trees. Consider a virus that has spread
on a tree and reached all nodes in the subgraph Gn. Then,
let the estimate for the virus source be a random variable v

—Ty =N-TV
—T¥

it % =N-TY

Figure 2: Tl.j variables for source nodes 2 hops apart.

with the following distribution.
P(v =v|Gn) x R(v,GN) (6)

This estimator weighs each node by its rumor centrality. It is
not the ML estimator as we had for regular trees. However,
we will show that this estimator is qualitatively as good as
the best possible estimator for general trees.

2.7 Virus Source Estimator for General Graphs

For a general graph, there is an underlying tree which
corresponds to the first time each node becomes infected.
Therefore, there is a spanning tree corresponding to a virus
graph. If we knew this spanning tree, we could apply the
previously developed tree estimators. However, the knowl-
edge of the spanning tree will be unknown in a general graph,
complicating the virus source estimation.

We circumvent the issue of not knowing the underlying
spanning tree with the following heuristic. We assume that
if node v € G was the source, then it spread the virus along
a breadth first search (BFS) tree rooted at v, Tp¢s(v). The
intuition is that if v was the source, then the BF'S tree would
correspond to all the closest neighbors of v being infected as
soon as possible. With this heuristic, we define the following
virus source estimator for a general virus graph Gn.

v = arg max R(v,Tprs(v)) (7)
veEG N

We will show with simulations that this estimator performs
well on different network topologies.

2.8 Properties of Rumor Centrality

We now look at some properties of rumor centrality in
order to gain an intuition about it.

PROPOSITION 1. On an N node tree, if node v* is the
rumor center, then any subtree with v* as the source has the
following property.

« N
T, <— 8
. (®)
If there is a node u such that for all v # u
N
T < —
v g ©)

then u is a rumor center. Furthermore, a tree can have at
most 2 rumor centers.

Proor. We showed that for a tree with N total nodes,
for any neighboring nodes u and v,

TS =N-T" (10)
For a node v one hop from v*, we find

R(v,T) TYXTY T
R(v*,T) T»Ty  (N-TY)

*




When v is two hops from v*, all of the subtrees are the same
except for those rooted at v, v*, and the node in between,
which we call node 1. Figure 2 shows an example. In this
case, we find

Ty
(N=T¢") (N = Ty7)

R(v,T)
R(v*,T)

Continuing this way, we find that in general, for any node v
in T,

R(v,T) "
_ T 11
rony - M -

where P(v*,v) means any node in the path between v* and
v, not including v*.
Now imagine that v* is the rumor center. Then we have

R(v,T) "

%) L N 12

ren - 1l o s (12)
i€P(v*,v) H

For a node v one hop from v*, this gives us that

<N (13)
2
For any node u in subtree qu*, we will have Tu”* < T;’* —1.
Therefore, (13) will hold for any node w € T. This proves
the first part of Proposition 1.
Now assume that the node v* satisfies (13) for all v # v™*.
Then the ratios in (11) will all be less than or equal to 1.
Thus, we find that

R(v,T) "

_— = — <1 14

R(v*,T) 11 (N—=T") = (14)
i€P(v*,v) v

Thus, v* is the rumor center, as claimed in the second part
of Proposition 1.

Finally, assume that v* is a rumor center and that all of
its subtrees satisfy T < N/2. Then, any other node v will
have at least one subtree that is larger than N/2, so v™ is
will be the unique rumor center. Now assume that v* has
a neighbor v such that TV = N/2. Then, T« = N/2 also,
and all other subtrees T, < N/2, so v is also a rumor center.
There can be at most 2 nodes in a tree with subtrees of size
N/2, so a tree can have at most 2 rumor centers. []

2.9 Rumor Centrality vs. Distance Centrality

‘We now wish to compare rumor centrality to another pop-
ular type of network centrality known as distance central-
ity. For a graph G, the distance centrality of node v € G,
D(v,G), is defined as

D(v,G) = d(v,5) (15)
JjEG

where d(v, j) is the shortest path distance from node v to
node j. The distance center of a graph is the node with
the smallest distance centrality. Intuitively, it is the node
closest to all other nodes. We will present two important
results in this section. First, on a tree, we will show the
distance center is equivalent to the rumor center. Thus, we
now have the proper justification for distance centrality to
be the correct estimator for a virus source on a tree. Second,
we will see that in a general network which is not a tree, the
rumor center and distance center need not be equivalent.

We will prove the following proposition for the distance
center of a tree.

PROPOSITION 2. On an N node tree, if vp is the distance
center, then, for all v # vp

P < (16)

]2

Furthermore, if there is a unique rumor center on the tree,
then it is equivalent to the distance center.

PROOF. Assume that node vp is the distance center of a
tree T" which has N nodes. The distance centrality of vp
is less than any other node. We consider a node v, which
is ¢ hops from vp, and label a node on the path between
ve and vp which is h hops from vp by wv,. Now, because
we are dealing with a tree, we have the following important
property. For a node j which is in subtree T,” but not in
subtree T, P, ., we have d(uve, j) = d(vp,j) + d — 2h. Using
this, we find

D(vp,T) <D(ve, T)

> _d(wp,j) <Y d(ve, j)

jeT veT

Szd(vaj) +‘€(N 7T1§)1D)+

€= 2) (TP — TP) + ..+ (£ — 20)(TLP)

vy
£ L
Y TP <Y (N-T;P) (17)

If we consider a node v, adjacent to vp, we find the same
condition we had for the rumor center. That is,

" N

Tle S 5

For any node u in subtree TP, we will have T,;)? < T,P —1.

Therefore, (18) will hold for any node v € T'. This proves
the first half of Proposition 2.

If vp is a rumor center, then, it also satisfies (18) as previ-
ously shown. Thus, when unique, the rumor center is equiv-
alent to the distance center on a tree. This proves the second
half of Proposition 2. []

(18)

For a general graph which is not a tree, the rumor center will
be the node chosen by the general graph estimator which uti-
lizes BF'S trees. In a general graph, as can be seen in Figure
3, this general graph rumor center is not always equivalent to
the distance center as it was for trees. We will see later that
the general graph rumor center will be a better estimator
of the virus source than the distance center. The intuition
for this is that the distance center is evaluated using only
the shortest paths in the graph, whereas the general graph
rumor centrality utilizes more of the network structure for
estimation of the source.

3. MAIN RESULTS: THEORY

This section examines the behavior of the detection proba-
bility of the virus source estimators for different graph struc-
tures. We establish that the asymptotic detection probabil-
ity has a phase-transition effect: for line graphs it is 0, while
for trees which grow faster than a line it is strictly greater
than 0.



Figure 3: A network where the distance center does
not equal the general graph rumor center.

3.1 Line Graphs: No Detection

We first consider the detection probability for a line graph.
We will establish the following result.

THEOREM 1. Define the event of correct virus source de-
tection after time t on a line graph as C:. Then the proba-
bility of correct detection of the ML virus source estimator,

P(C,), scales as
Py =0(J)

As can be seen, the line graph detection probability scales
as t~%/2, which goes to 0 as t goes to infinity. The intuition
for this result is that the estimator provides very little in-
formation because of the line graph’s trivial structure. The
proof of this theorem is omitted due to space constraints.

3.2 Regular Expander Trees: Non-Trivial De-
tection

We next consider detection on a regular degree expander
tree. We assume each node has degree d > 2. For d = 2, the
tree is a line, and we have seen that the detection probability
goes to 0 as the network grows in size. For a regular tree
with d > 2 we obtain the following result.

THEOREM 2. Define the event of correct virus source de-
tection after time t on a regular expander tree with degree
d > 2 as C¢. Then the probability of correct detection of the
ML virus source estimator, P(Cy) is bounded uniformly away
from 0. That is,

limtinf P(C:) >0

The intuition here is that when d > 2, there is enough com-
plexity in the network that allows us to perform non-trivial
detection of the virus source. This theorem is proved in
Section 5

3.3 Geometric Trees: Non-Trivial Detection

The previous results cover trees which grow linearly and
exponentially. We now consider the detection probability of
our estimator in trees which grow polynomially, known as
geometric trees. These are non-regular trees parameterized
by a number a. If we let n(d) denote the maximum number
of nodes a distance d from any node in the tree, then there
exist constants b and ¢ such that b < ¢ and

bd™ < n(d) < cd® (19)

We use the randomized estimator for geometric trees. For
this estimator, we obtain the following result.

THEOREM 3. Define the event of correct virus source de-
tection after time t on a geometric tree with parameter o > 0
as Cy. Then the probability of correct detection of the ran-
domized virus source estimator, P(Cy), is bounded uniformly
away from 0. That is,

limtinf P(C:) >0

This theorem says that @« = 0 and a > 0 serve as a threshold
for non-trivial detection: For o = 0, the graph is essentially
a line graph, so we would expect the detection probability to
go to 0 based on Theorem 1, but for a > 0, we always have
a positive probability of detection. While Theorem 3 only
deals with correct detection, one would also be interested in
the size of the virus source estimator error. We obtain the
following result for the estimator error.

COROLLARY 1. Define d(v,v*) as the distance from the
virus source estimator U to the virus source v*. Assume
a virus has spread for a time t on a geometric tree with
parameter o > 0. Then, for any € > 0, there exists an | > 0
such that

limtian(d(i},U*) <hh>1-¢

What this corollary says is that no matter how large the
virus graph becomes, most of the detection probability mass
concentrates on a region close to the virus source v*. Both
of these results are proved in Section 5

4. MAIN RESULTS: EXPERIMENT

We simulated virus propagation on several different net-
work topologies using our simple SI model. For all networks,
1000 virus graphs were generated per virus graph size. The
virus source estimator performance is evaluated for these
different networks in this section.

4.1 Tree Networks

The detection probability of the virus source estimator
versus the graph size for different trees is show in Figure 4.
As can be seen, the detection probability decays as N —1/2 a5
predicted in Theorem 1 for the graphs which grow like lines
(d =2 and a = 0). For regular degree trees with d > 2 and
for geometric trees with o > 0, we see that the detection
probability does not decay to 0, as predicted by Theorems
2 and 3, and is very close to 1 for the geometric trees.

A histogram for a 100 node virus graph on a geometric
tree with @ = 1 shows that most of the estimator error is
less than 1 hop, whereas the average virus graph diameter
was 9 hops. This indicates that the estimator error remains
bounded, as predicted by Corollary 1.

4.2 General Networks

We performed simulations on synthetic small-world [13]
and scale-free [3] networks. These are two very popular mod-
els for networks and so we would like our virus source estima-
tor to perform well on these topologies. For both topologies,
the underlying graph contained 5000 nodes. Figure 5 shows
an example of virus spreading in a small-world and a scale-
free network. The graphs show the virus infected nodes in
white. Also shown is the histogram of the virus source esti-
mator error and distance centrality estimator error for 400



Geometric Trees

Regular Trees

=4
®
o
©

o
=
4
Q.
[l
ES
o
=

Detection Probability
- ¢
Detection Probability

o
~
L O
1l
N
’
T
w

o

Frequency [%)]
F
(=}

N
o

=)

0o 1 2 3 4
Estimator Error [hops]

Figure 4: Virus source estimator detection probabil-
ity for regular trees (left) and geometric trees (right)
vs. number of nodes N, and a histogram of the error
for a 100 node geometric tree with « =1 (bottom).
The dotted lines are plots of N—1/2,

node virus graphs in each network. Most of the error in
these simulations was below 4 hops, while the average virus
graph diameter was 22 hops for the small-world and 12 hops
for scale-free networks . Thus, we are seeing good perfor-
mance of the general graph estimator for both small-world
and scale-free networks.

The distance centrality estimator performs very similarly
to the rumor centrality estimator. However, we see that on
the small-world network, rumor centrality is better able to
correctly find the source (0 error) than distance centrality
(16% correct detection versus 2%). For the scale-free net-
work used here, the average ratio of edges to nodes in the
400 node virus graphs is 1.5 and for the small-world network
used here, the average ratio is 2.5. For a tree, the ratio would
be 1, so the small-world virus graphs are less tree-like. This
may explain why rumor centrality does better than distance
centrality at correctly identifying the source on the small-
world network. Also, we note that neither estimator had
correct detection for the scale-free network. This may be
due to this network having many high degree nodes. Our
estimator assumes all permutations are equally likely, but
this assumption breaks down if some nodes have very high
degree. In essence, the estimator is being fooled to always
select higher degree nodes. However, by assigning appropri-
ate prior probabilities to each node based upon its degree,
we can compensate for the tendency of the estimator to favor
higher degree nodes.

4.3 Real Networks

We performed simulations on an internet autonomous sys-
tem (AS) network [1] and the U.S electric power grid net-
work [13]. These are two important real networks so we
would like our virus source estimator to perform well on
these topologies. The AS network contained 32,434 nodes
and the power grid network contained 4941 nodes. Figure
6 shows an example of virus spreading in both of these net-
works. Also shown is the histogram of the rumor centrality

Small-world
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Figure 5: An example of a virus graph (infected
nodes in white) and a histogram of the rumor cen-
trality and distance centrality estimator error for a
400 node virus network on small-world (top) and
scale-free networks (bottom).

and distance centrality estimator error for 400 node virus
graphs in each network. Most of the error in these sim-
ulations was below 4 hops, while the average virus graph
diameter was 8 and 17 hops for the AS and the power grid
networks, respectively. Thus, we are seeing good perfor-
mance of the general graph estimator for both of these real
networks.

We see that rumor centrality and distance centrality have
similar performance, but we see that for the power grid net-
work, rumor centrality is better able to correctly find the
source than distance centrality (3% correct detection ver-
sus 0%). For the power grid network, the average ratio of
edges to nodes in the 400 node virus graphs is 4.2, and for
the AS network the average ratio is 1.3. Thus, the virus
graphs on the power grid network are less tree-like. Similar
to the small-world networks, this may explain why rumor
centrality outperforms distance centrality on the power grid
network.

5. MAIN RESULTS: PROOFS

5.1 Proof of Theorem 2

In this section we prove the result on detection probability
for regular expander trees (Theorem 2). First, we need to
know under what conditions we have correct detection. We
saw earlier that the rumor center has the property that all
other subtrees have less than half of the total nodes. For a
degree d regular tree, there are d subtrees connected to the
source node. We define the number of nodes in each of these
d subtrees at time ¢ as N;(t). With this definition, we define
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Figure 6: An example of a virus graph and a his-
togram of the rumor centrality and distance cen-
trality estimator error for a 400 node virus network
on an AS network (top) and the U.S. electric power
grid network (bottom).

the event of correct detection C; as

Ct:{w

Now, we must find the distribution for N;(t). However, this
distribution has no closed form, so we instead work with
another related process. We define the time between the
the (n—1)'" and n'* infections in one of the subtrees as the
random variable 7;,. The root of the subtree is connected
to the source by 1 edge, and so its infection time 7} is just
an exponential of rate 1. The regularity of the tree means
that if there are n nodes in the subtree, then there are 1 +
(d—2)(n — 1) edges going out from these nodes which can
infect new nodes. Thus, the inter-infection time of the n'"
node (73,) is the minimum of 1+ (d — 2)(n — 1) exponential
random variables of rate 1, which is an exponential random
variable with rate 1 + (d — 2)(n — 1). We define the total
time for the n'* infection as S,, which is given by

1 d
max  Ni(t,w) < 5 ; N; (t,w)} (20)

i€l,2,...,d

S, = Z T, (21)

Because of the complexity of event C;, we define the following
sequence of events. Let D, (t) occur when all the d subtrees
have between n and (d — 1)n infected nodes at time ¢. This
way no subtree can have more than half of the total nodes.
More precisely,

d
Do (t) = {w‘ Mn < Niw,t) < (d- 1)n} (22)

i=1

With D,,(t) we now can lower bound P(C;).

P(C) > P (D Di(t)> >P(Da(t)) Vne{l,2,..} (23)

i=1

We now show how to bound P (D, (t)). For D, (t) to occur,
it must be that S, <t and that Sg_1), > t. Therefore, we
can write

d
P(D,()) =P (ﬂ (sn <t Sta-1yn = t)))

=(1-P(Sw>1t) =P (Su_1yn <1))*

=(P(Sn <t) =P (Sa_1yn < 1))*

([ ()= fssn)ar) 2

If we can show the above integral to be strictly positive,
we will prove Theorem 2. To begin, we first show some
properties of the random variable S,, in the following lemma.

LEMMA 1. The density of Sn for a degree d regular tree,
fs,.(t) is given by

fs, (1) = 71:[11 <1 + %) et(1—e )"t (25)

where a = d — 2. Furthermore, let t, = 1/alog(na —a + 1)
and 7, = 1/alog(n) + 1/alog(3/4a). Then we have that

1. dfs, (t)/dt >0 ¥Vte (0,t,)

2. limsup fs, (tn) < Cq and liminf fg, (7,) > Ba for
some finite Cq, Bg > 0.

3. 3 v €(0,1) such that limsup fs,_,,, (t)/fs,(t) < (1—
7) vVt (0,tn)

ProOF. We derive the density by induction. For n =1,
we have

fo () =e"" (26)

Now, we do the induction step.

Fsuin() =I5, (0)» (0
foon@ =TT (145 ) G+ an

t
e—'r(l _ e—a'r)n—le—(1+an)(t—7)d7_

S—

t
_ C(n)e—(l+an)t/ eanT(l _ e—aT)n—ldT
0

where we put all terms not involving ¢t or 7 into C(n). To
do the integral, we must expand (1 — e *7)" ! and then
integrate term by term. The resulting integral is then

t n—1 at(n—i)
_ _ -1 i € -1
anTt 1— aT\n 1d _ n -1 i T4
/0 e (1) =3 ( i >( ) a(n —1q)

=0



When we combine this with C(n) we obtain

i eat(n—i) -1

FS 4 () =C(n)eFom)! i (n B 1) (=1)

. (2
=0

:C('Z?)le_t i (7;) (—1)i(€_ati o e—ant)

a(n —1)

This completes the induction. Next, we show that the den-
sity is strictly increasing on (0, t,). If we take the derivative
of the density and set it to be positive, we obtain

dfs, (t)/dt > 0

(e (an—a+1)—1)>0
1/alog(an —a+1) > ¢

tn > t.

Now, we show item 2 of Lemma 1. First, we bound the
constant term in front of the distribution.

T(+2))=28(-4)
( )) élog(nq)f%

where ((2) is the Riemann zeta function. Then, we can
bound fs,, (1) as

11
522 2lo (
log >log(1:[

fS (Tn) >(n _ 1)1/0,67((2)/0,671/(1log(n)fl/alog(3/4a)
(1 . eflog(3/4an))n71

1 -1
o (=" —camijaonea ({3 )"
- n 4an

Therefore,

liminf fs, (7») > Ba > 0. (27)
We also find that

fSn (tn) Snl/ae—l/alog(na—a+1)+1(1 _ e—log(na—a+l))n—1

= (M)W (l - —1+1)

Therefore,

limsup fs, (tn) < Cy < 0. (28)

Finally, we establish item 3 of Lemma 1 We take the loga-

rithm of the ratio of the distributions.
(a+1)n—1

fs(dfl) (t) 1 t
log | ——2" -~ | = log(1+ — ) +nalog(l —e ¢
g( 0 ; g( m) g )
(a+1)n—1
< = - 1— —atp
< ; ; + nalog(l—e )
<110 (@+ln -1 +nalog(l - ————)
= a g n & an—a+1
< llog; (7@+ 1)n> + nalog(1l — i)
a n an
<llo (a+1)—1+i<lo (1-9)<0
~a s 2na — & K
Therefore,
t
lim sup Isi-an @) <(1=q)<1 Vte(0,t,) (29
n fs, (1)
O

Now we choose an n such that ¢,_1 <t < ¢, and we lower
bound the integral in (24).

/ (Fsn ()~ Fsgaory (D)7 > / (fo(r) — (1—
0 0
ny/ nfsn(r)dr—'y/t ’ fs, (T)dr

>7fs, (Tn)(tn — Tn) — ¥ fs, (tn)(tn — ta—1)

>3B,(1/alog(4/3)) ~ 7Ca log (%) .

V) fs, (7)) dr

For large n, the second term will go to 0, and therefore we
have

lim inf P(C;) > lim inf P(D,(¢))

> (vBa(1/alog(4/3)))* > 0.
This completes the proof of Theorem 2.

5.2 Proof of Theorem 3

In this section we present a proof of Theorem 3. This
proof involves 3 steps. First, we show that the virus graph
will have a certain structure with high probability. This al-
lows us to put bounds on T}, *, the sizes of the subtrees with
the virus source as the source node. Then, we express the
detection probability in terms of the variables T, " Finally,
we show that with this structure for the virus graphs, the
detection probability is bounded away from zero. Through-
out we assume that the underlying geometric tree satisfies
the property that there exist constants b and c¢ such that
b < c and the number of nodes a distance d from any node,
n(d), is bounded by

bd® < n(d) < cd® (30)

Structure of Virus Graphs. We wish to understand the
structure of a virus graph on an underlying geometric tree.
To do this, we first assume that the virus has been spreading
for a long time t. Then, we will formally show that there are
two conditions that the virus graph G, will satisfy. First,
the virus graph will contain every node within a distance
t (1 — €) of the source node, for some small positive €. Sec-
ond, there will not be any nodes beyond a distance ¢ (1 + ¢€)
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Figure 7: Partitioning of geometric tree for evaluat-
ing S.

from the source node with the virus. Figure 7 shows the
basic structure of the virus graph. It is full up to a distance
t(1 — €) and does not extend beyond ¢(1 + €). We now for-
mally state our results for the structure of the virus graph
(the proof is omitted due to space constraints).

THEOREM 4. Consider a geometric tree with parameter
a on which a virus spreads for a long time t, and let € =
t=1/2+% for some small 5. Define the resulting virus graph as
Gyt. Also define G as the set of all virus graphs which occur
after a time t that have the following two properties: every
node within a distance t(1 — €) from the source receives the
virus and there are no nodes with the virus beyond a distance
t(1 4+ €) from the source. Then,

tlim P(Gt S gt) =1

Detection Probability in terms of T?". Our virus source
estimator is a random variable ¥ which takes the value v with
probability proportional to R(v, G¢). The conditional proba-
bility of correct detection given a virus graph G; will be the
probability of this estimator choosing the source node v*,
which is P(v = v*|Gt). We showed that all virus graphs will
belong to the set G; with probability 1 for large t. Therefore,
we lower bound the probability of correct detection P(Cy) as

lim inf P(C;) =lim inf ; P (0 = v*|G)P(Gy)
t
>liminf inf P(0 = v"|Gy)
t GGy
We see that the detection probability is lower bounded by

the infimum of the conditional detection probability P (v =
v*|G¢) over Gy € Gi. Next, we express the detection proba-

bility in terms of the size of the subtrees T, "
P > inf Po=1v"
(C) = jnf Pv=07G)
-1

> inf

G.t €G¢ Z H vl

vEGE v;EGy “i

-1

. Ty, . 1

=t |2 1§77 zdis
vEGt v, EP(v*,v) o

Above we used the result from Section 2.8. We call the

resulting summation S and will need to upper bound it in

order to get a lower bound on the detection probability. The

structure of virus graphs in G; (Theorem 4) will allow us to

bound the sizes of the subtrees Tff;, and thus bound S.

Upper Bounding S. To evaluate the detection probability,
we must upper bound the sum

Tqi
P R VT o

vEGL v; EP(v*,v)

We know from Theorem 4 that after a time ¢ the graph will
be full up to (1 — €), with e = t71/2%% as before. We will
now divide Gt into two parts as show in Figure 7. The first
part is the portion of the graph within a distance ¢(1 — ¢€)
from the source and is denoted Go. The remaining nodes
will form graph G1. We can then break the sum S into two
parts.

s=> I (NTﬂTvﬁ

vEGo v; EP(v*,v)
S =So + 51

T;JI
vl (N -Ty)

vEG1 v; EP(v*,v)

First we will upper bound Sp. To do this, we must first
count the number of nodes in G, which we will call Ng. We
know that there are d* nodes a distance d from the source.
By summing over d up to t(1 — €¢) we obtain the following
bounds for Ng.

t(l—e) t(l—e)

Z bd™ <Ny < Z cd”

Lt = o Ny < C[t( g
a-+1 a+1

We have approximated the sum by an integral, which is valid
when t is large. Now, we must calculate N1, the number of
nodes in GG1. To do this, we note that there are no nodes
beyond a distance ¢(1 + €). Therefore, using the integral
approximation again for the sum, we obtain the following
bounds for N;

ta+1

b
a-+1

(Q+e* ™ —(1-e*) <N <

toz+1

1 a+1 —(1— a-+1
L (0 )
2bet® T < Ny <2cet™t!

We used the first order term of the binomial approximation
for (14¢)*** above. Now we rewrite So in a more convenient

notation.
So=> JI we=> b (32)

veEGo v; EP(v*,v) veGo

Now, to upper bound Sp, we group the b, according to the
distance of v from v*. We denote aq as the maximum value
of b, among the set of nodes a distance d from the source.
Then we can upper bound Sy as

t(l1—e)

So < Z cd®ag

d=1

Now, to calculate aq, we first must evaluate the w,; term
in equation (32). To do this, we consider a node v; € Go a
distance ¢ from the source. For this node, we upper bound
the number of nodes in its subtree by dividing all Ny nodes
in Go among the minimum bi* nodes a distance ¢ from the
root. Then, to this we add all N; nodes in G1 to get the



following upper bound on Tv”;

* N
Ty < o+ N

- i~
With this, we obtain the following upper bound for w,,
__n
YT N Ty
2o+ Ny
TN-Z2 - N
%’i + N1
S No - Mo ;\{72
1 2ce(a+ 1)
< B Tttt LA
=a (bia = e)a+1)

The constant ¢; is equal to (1—1/b)"*. Now, we write down
an upper bound for So, recalling that e = g1/,

t(1—t—1/2+5) d 1948
N 1 2ed™ Y (a+1)
So < Z cd izl_llcl (cTa + b(1 — d 17275t

d=1

We have used the fact that d < ¢t to upper bound the prod-
uct. We define the terms in the above sum corresponding to
a specific value of d as A4. Then, we use an infinite sum to
upper bound this sum.

t(1—t— /219

So < Z

d=1

Aq < i Aq
d=1

If we apply the ratio test to the terms of the infinite sum,
we find that

lim su Ad = lim su (L)a
d P d Pla=t
c1 i_y 2cd” 1?0 (a +1) =0
cde

b(1 — d—1/2+8)a+1
Thus, the infinite sum converges, so Sp also converges. Now
we only need to show convergence of S;. We upper bound
S1 in the same way as we did for So. We write the sum as

s=Y M e I

vEG] v; EP(v*,v),v; EGo v; EP(v*,v),v;,€Gy

SIm el

veEG \v;EP(v*,v),v,EGy

To upper bound S1, we group the b, according to the dis-
tance of v from the top of G1. We denote a4 as the maximum
value of b, among the set of nodes a distance d from the top
of G'1. We also denote the upper bound of the product of
Wy, over nodes in P(v*,v) and Gy as I'. Then we can upper
bound S; as

2te

51 < Z I'b, < chal—‘ad
d=1

veGy

Now, to calculate a4, we upper bound the w,,; for nodes in
G1. We assume that every subtree in G1 has size N1. Then,
similar to our procedure for Sy, we upper bound the weights
w,, for the nodes in G.

Ty Ny 2ce(a+1)

YT N T S No © b(1—e)at!

Recalling that € = t_1/2+5, we upper bound S; as

0¢1/2+8

o 2ed™1/? 0 (a4 1) ¢
S < dz_l cd F(b(l—d*1/2+5)a+1)

Above we have used the relation that d < t. We define the
terms in the final sum as By and as was done for Sy, we
upper bound this sum with an infinite sum.

2t1/2+6 0o

S1< D> Ba<) B
d=1 d

=1

If we apply the ratio test to the terms of the infinite sum,
we find that

lim sup = lim sup
d d—1 d

=0

d \% 2cd (a4 1)
d—1) b(1—d-1/2+3)a+1

Again, the ratio test proves convergence of the sum Si.

We have now shown that the sum S = Sp + S1 is upper
bounded by some finite S*. With this, we can lower bound
the detection probability for the geometric tree.

1

limtian(Ct) > limtinf Gitréf;jt é > o > 0

This completes the proof of Theorem 3.
5.3 Proof of Corollary 1

We utilize Theorem 3 to prove Corollary 1. First, we
rewrite the distribution of the estimator ¥ on a virus graph
G formed after a virus has spread for a time t.

R(v, G4) /R(v", Gi) plv, i)

Po=v)= =
( ) > R(v,Gi)/R@",G) Y pv,Gr)

vEG veEG

where p(v, G¢) is defined as follows using equation 11

"
N Ty

p(’l),Gt) = H

v; EP(v*,v)

We recognize the sum of p(v, G¢) over all v in G¢ as the sum
S which was previously shown to be bounded by a positive
constant S*. Now, let d(7,v*) be the distance between the
virus source estimator and the virus source. We can write
the probability of the estimator error being greater than [
hops as

—1
P(d(3,v") > 1|Gy) = (Z p(v,G») p(v,Gy)
veG vid(v,v*)>1
= S_l Z p(U7Gt)
vid(v,v*)>1

We select an € > 0 and define ¢; = €S. Then, because of the
convergence of the sum S, there exists an [ > 0 such that

p(vat) S €1 S GS
vid(v,v*)>1

Now, using this result along with Theorem 4 we find the
limiting behavior of the probability of the error being less



than [ hops:
1imtian(d(ﬁ,v*) <l)=1- limsupP(d(ﬁ7 v") > 1)
= 1—hmbup Z ) > 1|G)P(Gy)
GieGy
>1 —limsup S™* Z p(v, Gy)
t v:d(D,v*)>1

>1—hmsu — >1—e
P
Thus, for any positive €, there will always be a finite [ such
that the probability of the estimator being within [ hops of
the virus source is greater than 1 — ¢, no matter how large
the virus graph is.

6. CONCLUSION AND FUTURE WORK

This paper has provided, to the best of the authors’ knowl-
edge, the first systematic study of the problem of finding
virus sources in networks. Using the well known SIR model,
we constructed an estimator for the virus source in regular
trees, general trees, and general graphs. We defined the ML
estimator for a regular tree to be a new notion of network
centrality which we called rumor centrality and used this as
the basis for estimators for general trees and general graphs.

We analyzed the asymptotic behavior of the virus source
estimator for regular trees and geometric trees. For line
graphs, it was shown that the detection probability goes to
0 as the network grows in size. However, for trees which
grew faster than lines, it was shown that there was always
non-trivial detection probability and that for geometric trees
the estimator error was bounded. Simulations performed
on synthetic graphs agreed with these tree results and also
demonstrated that the general graph estimator performed
well in different network topologies, both synthetic (small-
world, scale-free) and real (AS, power grid).

On trees, we showed that the rumor center is equivalent to
the distance center. However, these were not equivalent in
a general network. Also, it was seen that in networks which
are not tree-like, rumor centrality is a better virus source
estimator than distance centrality.

The next step of this work would be to refine the general
graph estimator by choosing appropriate prior probabilities
for the nodes in order to compensate for the fact that the
node permutations have different probabilities. This would
improve the performance of the estimator on networks which
have nodes with very high degree, such as scale-free net-
works.
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